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AbsIracL The influence of the electronic Coulomb repulsion on the critical temperature 
for a layered superconductor is studied by using the Eliashkrg theocy. The dependence 
of the critical temperature, T,, on the interlayer distances, tunnelling integral t l  and 
the th ickns  of the conducting layers is established. 

The Lawrence-Doniach free energy functional for quasi-nvodimensional supercon- 
ductors is used to study the influence of fluctuations of the order parameter phase on 
T, and the dependence of T, on t l  is also obtained. The critical temperature appears 
to increase with t l  for T, within the range T: < T, <  where 6) is the critical 
temperature formally evaluated by means of BCS theocy and T: = ( l / l$)+l /2xc~)- ' .  

1. Introduction 

Discovery of a new class of high-temperature superconductors containing thallium 
(T1,Ba2Ca,-,Cu,O,(,+,)+,) and bismuth (Bi,Sr,Ca,-,Cu,O,,+,) [l-31 has 
c o n h e d  once again that variation of the structure anisotropy strongly affects the 
transition temperature Tc, upper and lower critical fields, coherence length and other 
important parameters of superconductors (scs). In these materials the number n of 
superconducting CuO, planes per unit cell, as well as the distance between the planes 
are changed with variation of calcium concentration. 

The recent developments in epitaxial technology allow the growth of artificial 
sc/dielectnc superlattices [46] in which the thickness of planes varies within a wide 
range. Variation of superlattice parameters such as thickness and materials of layers 
strongly influences the critical temperature T,. Therefore, finding the dependence of 
T, on the thickness of sc and dielectric layers, and also on the tunnelling integral 
between sc layers, becomes an interesting problem. 

In the present paper, strongly anisotropic sa are studied on the basis of the 
Lawrence-Doniach model [6,7l. In this model two-dimensional (2D) sc planes 
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Baku, Azerbaijan. 

095+8984/mX)81~9+10$7.50 @ 1993 LOP Publishing Ltd 1099 



1100 

weakly interact with each other by Josephson coupling. Here the energy spectrum 
of electrons is supposed to have the form 

E P Nakhmedov et a1 

<(K, K,) = ( K 2 / 2 m )  + t,[l- c o s K z ( a  + d) ]  (1) 

where K is the 2~ impulse vector inside a conducting layer, K, h the z component 
of the impulse vector (K, K,),t, is the interlayer tunnelling integral, d is the SC 
layer thickness and a is the distance between these layers (for superconducting 
superlattices d and a are the sc and dielectric layer thicknesses, respectively). t ,  
characterizes the intensity of electron tunnelling between the layers and must depend 
on the ratio a / b  as t ,  = F ( a / b ) ,  where b is a characteristic distance of the order 
of unit cell size in the sc layer. The function F ( a / b )  rapidly decreases when the 
distance a increases. It is possible, in principle, to obtain an explicit expression for 
this function provided that the electron density distribution inside the SC layers is 
known. 

A strongly anisotropic Fermi surface corresponds to the case of t ,  < cp = 
&/2m, where eF is the Fermi energy. Then, the Fermi surface becomes open as a 
mrrugated cylinder. 

In the absence of Josephson connection between the layers, fluctuations of the 
order parameter phase would destroy the long-range order [9, lo]. Nevertheless, the 
existence of topological defects in a 2~ sc, such as ’vortices’ and ‘antivortices’ of 
a phase field, should result in the Befezinsku-Kosterlitz-Thouless phase transition 
at T = Tw [ll-131. The same defects give rise to a quasi-long-range order at 
Tm < T < Tg),  where Tg) is a critical temperature formally evaluated by the 
mean field theory for a single S c  plane. 

It has been shown (14,15] that at suficiently low value of Josephson coupling 
constant, W, = t : / e , ,  weak interaction of the vortices at different sc planes 
may bind together the Kosterlitz-Thouless vortices as vortex loops. Therefore, the 
dependence of the critical temperature T, on W ,  can be expressed as 

T, = Tm[l+ l/lnZ(hzNs/2mW,)] 

where N,  is the surface density of electrons. 
Friedel has shown [15,16] that plane dislocation loops whose core is located 

between the sc layers can be created in quasi-ZD superconductors. These defects, 
according to Friedel, are created more easily and lead to a dependence of p, on W ,  
of the form 

= T.f)/(1+ III(E,/w,)]. (3) 

In this paper we study the dependence of the critical temperature T, on the 
interlayer tunnelling integral t,, the distance a between sc layers, and also the 
thickness d of sc layers, caused by Coulomb interaction between electrons. In this 
connection we take the thickness d of sc layers to vary in an interval which satisfies 
the condition (a + d )  < E ,  [17] where c, is the correlation length perpendicular to 
the layers. 

Further, starting from the Lawrence-Doniach free energy functional [6,8] we 
find the dependence of T, on W ,  caused by the classical fluctuations of the order 
parameter phase. 
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2. Coulomb repulsion effects in layered superconductors 

We shall use the Eliashberg theory [18,19] to obtain the transition temperature. 
This method has been applied to layered systems by other authors 120,211 with the 
purpose of studying their superconducting properties. Therefore, without detailed 
calculations we shall start from the following gap equation for A(I, y) in a coordinate 
representation 

A(I,I’) = /d‘y d4z G(r, y)G(=’, ~ ) A ( Y ,  r)r(y, z )  (4) 

where I = { r ,w} ;  G(r ,T’;w) is an electron Green function and r (T,r ’ ;w)  is a 
kemel of the Eliashberg equation. In a momentum representation the kemel r ( p , w )  
is represented as r ( p , w )  = D(p,w)+ o ( p , w )  which implies the contributions from 
the electrowphonon interaction, D(p,w),  and Coulomb interaction, o ( p ,  w) .  

In a weak-coupling limit where electrorcphonon coupling constant X is smaller 
than unity, i.e. X < 1, the Eliashberg equation gives an analytical solution and the 
well known Bardeen-Cooper-Schrieffer (em) expression for T, as 

T, = ( ~ Y / T ) ~ D  exp[-l/(X - r’)l (5) 

where wD is the Debye temperature, 1.1. is the Coulomb pseudopotential and 
y = ec = 1.78.. ., the Euler-Mascheroni constant. 

DSerent frequency scales of X and p lead to weakening of p as 

p* = p/[l + p In(cF/wD)l (6) 

where p is the screened Coulomb interaction averaged over the Fermi surface. 
Averaging of the screened Coulomb potential V(K,Kz) over the Fermi surface 
is performed according to the formula 

where ~ ( 0 )  = m/?rliz is the ZD density of states on the Fermi surface and D = a+d. 
’lb calculate p, we shall use the expression for the bare Coulomb interaction 
V ( K ,  h’z) 1221 of charged particles in a metal-dielectric superlattice: 

(8) 
h e 2  V ( K ,  K,) = - plSinhK(a + d )  + & h h  K ( U  - d)  
E K  PfcoSh K(a  + d )  - p: cosh K ( a  - d) - I )  COS(. + d)K,  

where K is a modulus of the 2D impulse vector inside the conducting layer, d is 
the thickness of the conducting layer and a is the distance between them (or the 
dielectric layer thickness in artificial metal/dielectric superlattices). 
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In (S ) ,  the following definitions are introduced Pi = +( 1 + q), PZ = 1!1- q), 
where q = el/€; with e and el being the static permittivities of a metal and dielectric, 
respectively. 

Divergence of the bare potential V ( K ,  K , )  at small impulses may be removed by 
summing the loop diagrams [19,23]. Using the Dyson equation the screened Coulomb 
potential v ( K ,  Ifz; w )  is expressed by an electron polarizator n ( K ,  K , ;  w )  as 

v ( K , K z ; w )  = V ( K , K , ) / [ 1 +  v ( K , K , ) I I ( K , K , ; w ) ] .  (9) 

The polarization operator II(K, K,;  w )  is calcuIated by the following expression: 

where n is the Fermi distribution. The electron energy spectrum E is defined by 
equation (1). At zero frequency, we integrate over P and obtain 

where 

II(0) = m/lrh2 A = IC2 + 4mt, sin(KzD/2)sin(p,D) 

and 

P' = { p ;  - 2mt,[1- cos(p, - K , / 2 ) D ] ) ' / 2 .  

In (Il), ff(z) is a step function, i.e. ff(z) = 1 for 2 > 0; G ( r )  = 0 for z < 0, and 
sgn(z) = 1 for z > 0; sgn(z) = -1 for z < 0. For strongly anisotropic systems, 
where the condition t , /eF Q: 1 is satisfied, we can also integrate (11) over p,. As a 
result we obtain n ( K ,  1C;O) as 

4J1;c2-4p:,+8mtl 

for ICz > 4p; - 8mlL( l  - /cos $ K , D ( )  
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It is seen from (12) that the polarization operator II(K, K,;O) remains constant 
over a wide range of K, and there are corrections to II(0) only in the vicinity of 
2pp. Substituting (12) and (8) into (9) we can calculate p by using equation (7). For 
different asymptotic cases we obtain expressions for p. In the m e  of a > d the 
Coulomb pseudopotential is reduced to the following expression: 

p(a,tJ.) = 2a/n  1/[2pFaa(2E1 +2pFaa)l”z+(1/E1) ln[(a+el)/(a+ cl/2PFa)l { 
+ l/(‘3 + a) + ( 4 a / w ) 6 / ( E 1  + a)}. (13) 

Here, the parameter 7 = tl/eF characterizes the degree of anisotropy and 7 < 1 
corresponds to an open Fermi surface. The other parameter a = e2/hvF in (13) is 
defined as the ratio of the average Coulomb interaction between two electrons to the 
kinetic energy of an electron on the Fermi surface, and usually 01 < 1. 

In the oppcsite asymptotic case of a < d equation (13) for p ( d , t , )  is obtained 
but here the replacements summarized as cl e e and a o d are employed. 

Equation (13) shows that p decreases as the thickness d of sc layers increases. As 
a consequence T, increases. It can be seen from equation (13) that the dependence 
of T, on the tunnelling integral tl has the following form: 

T, a exp [-I/ ( x - c o n s t . a ) ]  . (13’) 

Since the superconducting properties of the system are defined by the electrow 
phonon coupling constant within the framework of the model under consideration, 
the dependence of X on L,, a and d should also be studied to find a mmplete 
expression for T,(t,,a, d ) .  On the other hand the essential order parameter phase 
fluctuations result in a rather strong dependence of T, on t,. 

3. Influence of the order parameter phase fluctuations on the critical temperature: 
dependence of T, on tL  1241 

In purely zD systems a mrrelator of order parameters (Aj(0)A;(r)) is known to 
decrease as a power of the distance r.  Thus, according to the Young criterion [9], 
ODLRO is absent in ZD superconductors. However, the existence of ‘quasi-long-range 
order’ in a system leads to the Kosterlitz-Thouless topological phase transition [Il-131 
at the critical temperature T = Tm. 

Further, the inclusion of even small coupling t ,  between sc layers restores an 
ODLRO in the system. Therefore T, must increase with the transverse resonance 
integral tl. Such a behaviour of T, cannot be obtained from the BCS model and 
therefore the fluctuation effects must be taken into account. 

It is necessary to emphasize that long-range order in a ZD sc is destroyed by 
strong fluctuation of the order parameter phase [9]. However, fluctuations of the 
order parameter modulus may be neglected. These features are also inherent to 
quasi-zo sa [lo]. 
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73 study the effect of order parameter phase fluctuations on the critical 
temperature T, we shall start from the LawrenceDoniach free energy functional 
Fst{q5} for a quasi-u, sc [6], 

+ W , ( g ) { l -  cos[4j(=,Y) - 4j+9("'Y)11} (14) 
g=*1 

where 4 j ( r )  is the phase of the order parameter Aj = [Aj I exp[idj(r)] in the plane 
j with coordinate r = {z,y). W, = is the Josephson junction gnergy and 
N."'(T) is the surface concentration of sc electrons defined as 

N p ) ( T )  = N:*)(O)(l- T/Tg))  for T < T$) 

where 

N?'(O) = $(PF/h)Z 

is the surface concentration of the normal state electrons. 

Kt{+) are neglected. 
In expression (14) contributions of the modulus of the order parameter lAjl to 

The mean value of the order parameter is defined by the following expression: 

Accurate calculation of a path integral (15) with the free energy functional (14) is 
not possible. At T = T, equation (15) has a non-zero solution which may define the 
transition temperature T,. 73 calculate the integral (15) we shall use the mean field 
approximation by replacing the free energy functional (14) by the following expression 
FI41 [=I: 

= Fu{4) - N,'z )W,(~~q5)  I d2rcos+(+) (16) 

where Fu{+) is the free energy functional of a 2D sc and WL = E,=*, W,(g). This 
self-consistent method was used by Eferov and Larkin 1251 to find the dependence of 
critical temperature T, on t L  in a quasi-one-dimensional sc (see also [26]). 

In the vicinity of T, the order parameter approaches zero. Therefore the second 
part of the free energy functional p { + )  in (16) may be chosen as a small parameter. 
Substituting (16) for P{4}  in (15) instead of F,,{+) and performing an expansion in 
terms of this small parameter we obtain the following equation for T': 
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where the symbol (. . .)" indicates an averaging by means of the free energy functional 
Fu{+} for a single sc layer. The correlator ( c o s + ( ~ ) c o s ~ ( T ) ) ~  for a 2D sc has been 
calculated in [8.9]. It has the following form: 

(cos +(O) coS4( . ) ) "  

where Ell = fivF/rA(0) is the correlation length inside the sc plane. 

expression (18) only when the following condition is satisfied 
Equation (17) may be solved for T, by taking into a m u n t  the correlator 

(1/2r)kTc/cF(1 - TJTZ)) < 1. 

T,' < T, < T p  

l/kT,' = l/kT$' t 1/2rcF. 

(19) 

In other words, the critical temperature must be in the interval of 

(20) 

where T; is defined as 

(21) 

T; is the temperature above which the interlayer phase coherence is destroyed [SI. 

expression for the critical temperature T,: 
Substituting (18) into (17) under the condition (19) we obtain the following 

For a small value of the tunnelling integral W, < fi2/2nef, equation (22) takes the 
following form: 

T, = - (T,'/~P)(~~€~/~~)(~I/EF)~~. (23) 

For the opposite case, that is, W, > h2/2m<$ the critical temperature becomes 
closer to T z ) ,  as can be seen from the relation 

T, = T$)/(l+ T , ' / n k F ~ l l t , ) .  (24) 

It can be seen from equations (22)-(24) that the critical temperature T, increases 
with increasing a, and approaches Tg) in the interval T; < T, < 2'2). 

It is necessary to emphasize that the above calculation of the Coulomb effect ( (S),  
(6) and (13)) is carried out in the frame of BsC-like mean field theoty. On the other 
hand quantum fluctuations of the phase of the order parameter also occur as a result 
of the electrostatic charging energy 127-301. This effect has been studied earlier [SI 
for calculation of the correlator (cos +j (0) cos +i ( T ) ) "  in quasi-ZD sa. In this case 
the Coulomb energy is characterized by the parameter 

a: = ( ~ / 2 7 ) ~ m / 2 R C  
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where C is the capacitance matrix. For small values of 4, Le. ai < 1, the leading 
term of the correlator ( c o ~ + ~ ( O ) c o s ~ ~ ( ~ ) ) O  does not depend on the parameter 0: 

(see [SI) and can be expressed by (18). Therefore, in the limit of ai < 1 quantum 
fluctuations must not strongly change the classical fluctuation effects. 

If we carry out calculations beyond the leading term in ai < 1, then the correlator 
given in (18) must be multiplied by exp[-2a:(T~)/T)kT~)/cp]  < 1. 

The appearance of such a multiplication factor of the correlator in (18) is 
equivalent to renormalizing the Josephson coupling constant W ,  in (17). Further, 
this small exponential factor will reduce the value of W,. Thus, the Coulomb energy 
resulting from the quantum fluctuations of the phase of the order parameter must 
lead to a reduction in T, [27-301. 

The charging effects and superconductor-insulator transition [27-301 in layered 
scs are presently under investigation. 

4. Conclusions 

In this article the influence of the Coulomb repulsion and order parameter phase 
fluctuations on T, has been studied in layered sa. In the calculation of the Coulomb 
pseudopotential the thicknesses of the sc layers are also taken into consideration. By 
using equation (8) for a 'bare' Coulomb potential, the dependence of p on t,, a and 
d (see (13)) has been obtained. 

Recently other theories [26-2!3] have appeared that provide different explanations 
of the dependence of T, on t, and the number of CuO, layers in the unit cell for the 
high-Tc sc. 'RI obtain the dependence of T, on the number n(n > 1) of sC layers in 
each elemental cell (or on the thickness of sc layers) a generalized Ginzburg-Landau 
functional with different critical temperature for each sc layer is used (281. In this 
model the critical temperature Tc was shown to increase with increasing n. Our 
expression (13) for p ( d )  reveals only the Coulomb repulsion contribution to T,. 

We must point out that the dependence of T, on t ,  given in formula (13') is 
not complete. TO obtain the complete relation between T, and t,, a and d within 
Eliashberg's approach, the dependences of the effective electron-phonon coupling 
constant d ( w )  and the phonon density of states F(w) on t,, a and d must be 
studied. n o u g h  similar problems have been dealt with in the literature [30,31], we 
believe that the dependence of the electron-phonon coupling constant 

Ju W 

on t,, a and d should be investigated for a quasi-ZD sc. 
By taking into a m u n t  the influence of order parameter phase fluctuations on 

the critical temperature we have shown that T, decreases with t ,  (see (22)-(24)) 
within the interval T,' < T, < T,"), approaching T,'. This indicates destruction of 
the coupling between the sc planes. However, the existence of vortices inside layers 
gives rise to a non-zero value of T,. 

In artificial YBa2Cu3O7/PrBa,Cu,0, superlattices [5,6] the dependence of T, on 
sc and dielectric layer thicknesses was investigated. Increase of the dielectric layer 
thickness a (Le. the decrease of tL) leads to a decrease in T, and also an increase in 
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the width of the resistive transition. lb understand such a dependence of T, on a, one 
should probably start from equation (22). Widening of the resistive transition [l-31 
may be caused by the motion of free vortices in sc layers [Il-131. 

It is possible to study the concentration dependence of the critical temperature in 
high-"= sa [32-391 by the equations ((22)-(24)) that we have obtained for T,. 

Tb gain more information on the t ,  dependence of T, experimental studies of SC 
transitions under external pressure may be helpful. 
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