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Abstract. The influence of the electronic Coutomb repulsion on the critical temperature
for a layered superconductor is studied by using the Eliashberg theory. The dependence
of the critical temperature, T;, on the inierlayer distances, tunnelling integrat £, and
the thickness of the conducting layers is established.

The Lawrence-Doniach free energy functional for quasi-two-dimensional supercon-
ductors is used to study the influence of fluctuations of the order parameter phase on
T, and the dependence of T on ¢ is also obtained. The critical temperature appears

to increase v.fith ) for T within the range T < T < T(z), where T,fnz) is the critical
temperature formally evatuated by means of BCS theory and T = (I/Tgnz) +1/2mep)~ L

1. Introduction

Discovery of a new class of high-temperature superconductors containing thallium
(T1,,Ba,Ca,_;Cu, 0y 41y41,) and bismuth (BiSr,Ca,_;Cu, 0y, ,) [1-3] has
confirmed once again that variation of the structure anisotropy strongly affects the
transition temperature T, upper and lower critical fields, coherence length and other
important parameters of superconductors (SCs). In these materials the number n of
superconducting CuQ, planes per unit cell, as well as the distance between the planes
are changed with variation of calcium concentration.

The recent developments in epitaxial technology allow the growth of artificial
sc/dielectric superlattices [4-6] in which the thickness of planes varies within a wide
range. Variation of superlattice parameters such as thickness and materials of layers
strongly influences the critical temperature T,. Therefore, finding the dependence of
T, on the thickness of sC and dielectric layers, and also on the tunnelling integral
between sc layers, becomes an interesting problem.

In the present paper, strongly anisotropic SCs are studied on the basis of the
Lawrence-Doniach model [6,7]. In this model two-dimensional (2D) SC planes
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weakly interact with each other by Josephson coupling. Here the energy spectrum
of electrons is supposed to have the form

§K,K,)=(K*2m)+t,[l-cos K, (a+ d)] )

where K is the 2D impulse vector inside a conducting layer, K, is the z component
of the impulse vector (K, K,),t, is the interlayer tunnelling integral, d is the sC
layer thickness and o is the distance between these layers (for superconducting
superlattices d and o are the sC and dielectric layer thicknesses, respectively). ¢,
characterizes the intensity of electron tunnelling between the layers and must depend
on the ratio a/b as t, = F(a/b), where b is a characteristic distance of the order
of unit cell size in the scC layer. The function F(e/b) rapidly decreases when the
distance a increases. It is possible, in principle, to obtain an explicit expression for
this function provided that the electron density distribution inside the sC layers is
known.

A strongly anisotropic Fermi surface corresponds to the case of ¢, < ep =
p%/2m, where € is the Fermi energy. Then, the Fermi surface becomes open as a
corrugated cylinder.

In the absence of Josephson connection between the layers, fluctuations of the
order parameter phase would destroy the long-range order [9,10]. Nevertheless, the
existence of topological defects in a 2D sC, such as ‘vortices” and ‘antivortices’ of
a phase field, should result in the Berezinskii-Kosterlitz-Thouless phase transition
at T = Tyr [11-13]. The same defects give rise to a quasi-long-range order at
Tar < T < Tg'), where Té,z) is a critical temperature formally evaluated by the
mean field theory for a single sc plane.

It has been shown {14,15] that at sufficiently low value of Josephson coupling
constant, W, = 13 /ep, weak interaction of the vortices at different SC planes
may bind together the Kosterlitz—Thouless vortices as vortex loops. Therefore, the
dependence of the critical temperature T, on W, can be expressed as

T, = Tigll + 1/ W (RN, /2mW, )] @

where N, is the surface density of electrons.

Friedel has shown [15,16] that plane dislocation loops whose core is located
between the SC layers can be created in quasi-2D superconductors. These defects,
according to Friedel, are created more easily and lead to a dependence of 7, on W,
of the form

T, = TP/ + ln(e/ W, )] 3

In this paper we study the dependence of the critical temperature T, on the
interlayer tunnelling integral ¢,, the distance ¢ between SC layers, and also the
thickness d of sc layers, caused by Coulomb interaction between electrons. In this
connection we take the thickness d of sC layers to vary in an interval which satisfies
the condition (e + d) < £, {17] where £, is the correlation length perpendicular to
the layers.

Further, starting from the Lawrence-Doniach free energy functional [6,8] we
find the dependence of T, on W, caused by the classical fluctuations of the order
parameter phase,
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2. Coulomb repulsion effects in layered superconductors

We shall use the Eliashberg theory [18,19] to obtain the transition temperature.
This method has been applied to layered systems by other authors [20,21] with the
purpose of studying their superconducting properties. Therefore, without detailed
caiculations we shall start from the following gap equation for A(z, y} in a coordinate
representation

Az, o) = j d*y a*z G(z,y)G(', 2)A(y, 2)[(y, 2) @)

where z = {r,w}; G(r,+";w) is an electron Green function and I'(r,r;w) is a
kernel of the Eliashberg equation. In a momentum representation the kernel I'(p,w)
is represented as ['(p,w) = D(p,w)+ U(p,w) which implies the contributions from
the electron-phonon interaction, D(p,w), and Coulomb interaction, J(p,w).

In a weak-coupling limit where electron-phonon coupling constant A is smaller
than umity, i.e. A < 1, the Eliashberg equation gives an analytical solution and the
well known Bardeen-Cooper—Schrieffer (BCs) expression for 7, as

T, = (2v/m)wp exp[-1/(A - 1*)] ' )

where wp is the Debye temperature, p* is the Coulomb pseudopotential and
¥ =¢e°=1.78..., the Euler-Mascheroni constant.
Different frequency scales of A and p lead to weakening of p as

p* = uf[14+ g In(ep/wp)] (6)

where p is the screened Coulomb interaction averaged over the Fermi surface.
Averaging of the screened Coulomb potential V(K , K,) over the Fermi surface
is performed according to the formula

D (P 2w [** 4K _
=5 v
ez f-w/p T /u [y - ki’ oK) Q)

where 1/(0) = m /= }h? is the 2D density of states on the Fermi surface and D = a+-d.
To calculate p, we shall use the expression for the bare Coulomb interaction
V(K, K,) [22] of charged particles in a metal-diclectric superlattice:

27e? By sinh K(a + d) + B, sinh K(a —~ d)
eK p}cosh K(a+ d) — BZcosh K(a—d) — ncos(a + d) K,

V(K,K,)= ®

where K is a modulus of the 2D impulse vector inside the conducting layer, d is
the thickness of the conducting layer and o is the distance between them (or the
dielectric layer thickness in artificial metal/dielectric superlattices).
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In (8), the following definitions are introduced: 8, = (1 + ), B, = (1 - »),
where n = ¢;/¢; with € and ¢, being the static permittivities of a metal and dielectric,
respectively.

Divergence of the bare potential V{ K, K, ) at small impulses may be removed by
summing the loop diagrams [19,23]. Using the Dyson equation the screened Coulomb
potential V(K, K,;w) is expressed by an electron polarizator (K, K ,;w) as

V(K, K,;w) = V(K,K,)/[1+ V(K,K)I(K, K ;w). ®)

The polarization operator II( K, K,;w) is calculated by the following expression:

(K, Kyw) =2 3 P HE P + Koty )] nl6P, Pyit, )] 19
PP,

4 E&P,P;t,)~EP+ K, P, + K3t )+iw

where n is the Fermi distribution. The electron energy spectrum £ is defined by
equation (1). At zero frequency, we integrate over P and obtain

O(K,K;w) _ . 1 (Pdp, = Tl A2 .2
G =1- K”]:,/DE?’/A — (2K P*)?9] A2 — (2K P*)YsgnA (1)

where

I(0) = m/wh? A = K% +4mt, sin(K,D/2)sin(p, D)
and

P* = {p} — 2mit,[1-cos(p, — K, /2)D1}"/2.

In (11), 9(x) is a step function, ie. d(x) =1 for = > 0; #(z) = 0 for » < 0, and
sgn(z) = 1 for = > 0; sgn(z) = —1 for z < 0. For strongly anisotropic systems,
where the condition ?, /ep < 1 is satisfied, we can also integrate (11) over p,. As a
result we obtain II( K, K;0) as

(44/K? — 4pt +8m1,
for K% > 4p} — 8mt, (1~ |cos 1K, DY)

(K, K,;0) _ 1— L) K*—~4pt+8mt, (14 |cos 1K, D)

n(0) K 2(mt, |cos } K, D|)1/2
for 4pf — 8mt (1 + |cos 1K, D|) < K*?
. < 4p; -8mit,(1—|cosiK, D).

(12)
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It is seen from (12) that the polarization operator II{ X, K,;0) remains constant
over a wide range of K, and there are corrections to II(0) only in the vicinity of
2pp. Substituting (12} and (8} into (9) we can calculate 4 by using equation (7). For
different asymptotic cases we obtain expressions for p. In the case of ¢ > d the
Coulomb pseudopotential is reduced to the following expression:

u(a,t,) = 2/ {1/ 2praa(2e; + 2ppac)l /74 (1/e) nl(art ) (art &/ 2p5a)]
+1/(e+ @)+ Uafra i falla + o). 13)

Here, the parameter 7 = t, fep characterizes the degree of anisotropy and 7 < 1
corresponds to an open Fermi surface. The other parameter o = e?/hvp in (13) is
defined as the ratio of the average Coulomb interaction between two electrons to the
kinetic energy of an electron on the Fermi surface, and usually « < 1.

In the opposite asymptotic case of o < d equation (13) for u(d,¢, ) is obtained
but here the replacements summarized as ¢, & ¢ and o < d are employed.

Equation (13) shows that u decreases as the thickness d of SC layers increases. As
a consequence T, increases. It can be seen from equation (13) that the dependence
of T, on the tunnelling integral ¢, has the following form:

T, xexp [—l/ ()\ - const.\/x;/_q:)] .. (139

Since the superconducting properties of the system are defined by the electron—
phonon coupling constant within the framework of the model under consideration,
the dependence of X on ¢,, a and d should also be studied to find a complete
expression for T (#, ,a,d}. On the other hand the essential order parameter phase
fluctuations resuit in a rather strong dependence of T, on ¢, .

3. Influence of the order parameter phase fluctuations on the critical temperature:
dependence of T, on ¢, [24]

In purely 2D systems a correlator of order parameters (A;(0)Aj(r)) is known to
decrease as a power of the distance r. Thus, according to the Young criterion [9],
ODLRO is absent in zD superconductors. However, the existence of ‘quasi-long-range
order’ in a system leads to the Kosterlitz-Thouless topological phase transition [11-13]
at the critical temperature T = Tyr.

Further, the inclusion of even small couplmg t, between SC layers restores an
ODLRO in the system. Therefore 7, must increase with:the transverse resonance
integral ¢,. Such a behaviour of Tc cannot be obtained from the BCS model and
therefore the fluctuation effects must be taken into account.

It is necessary to emphasize that long-range order in a 2D sC is destroyed by
strong fluctuation of the order parameter phase [9]. However, fluctuations of the
order parameter modulus may be neglected. These features are also inherent to
quasi-2D sCs [10].
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To study the effect of order parameter phase fluctuations on the critical
temperature T, we shall start from the Lawrence-Doniach free energy functional
F,{¢} for a quasi-2D sc [6],

o= oo (2 (3]

+ 3 Wo(a){1 - cos[(z,5) - ¢,-+,(x,y)1}} (14)

g==1

where ¢;(r) is the phase of the order parameter A; = [A;|explid;(r)] in the plane
J with coordmate r = {x,y}. W, =8 fe is thc Josephson junction pnergy and
N, m(T) is the surface concentration of SC electrons defined as

NO(Ty= NOO)Y1-T/T®)  for T < TP
where
NO(0) = (Pe/h)?

is the surface concentration of the normal state electrons.
In expression (14) contributions of the modulus of the order parameter |A,| to
F,{¢#} are neglected.
The mean value of the order parameter is defined by the following expression:

{cos ;) = /Dd)coscgs exp( {QS})//Dq&exp (—E?c%) . (15)

Accurate calculation of a path integral (15) with the free energy functional (14) is
not possible. At T = T, equation (15) has a non-zero solution which may define the
transition temperature T,. To calculate the integral (15) we shall use the mean field
approximation by rep]acmg the free energy functional (14) by the following expression

F{¢} [25]):
Fi¢} = N(z)/dz [i (%E‘"—))z—W_L(COSqﬁ}cosqS]
= Fy{¢} - NOW, (cos §) f d*r cos () (16)

where Fy{¢} is the free energy functionalofa2pscand W, =37 .;, W, (g). Th
self-consistent method was used by Efetov and Larkin [25] to find the dependence of
critical temperature T, on t, in a quasi-one-dimensional sC (see also [26]).

In the vicinity of T the order parameter approaches zero. Therefore the second
part of the free energy funct:onal F{¢} in (16) may be chosen as a small parameter.
Substituting (16) for F'{¢} in (15) instead of F,{¢} and performing an expansion in
terms of this small parameter we obtain the following equation for T,:

e
1= M f d2r (cos $(0) ¢os (7)), (17
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where the symbol {. ..}, indicates an averaging by means of the free energy functional
Fy{¢} for a single sc layer. The correlator {cos ¢(0) cos ¢(r)), for a 2D SC has been
calculated in [8,9]. It has the following form:

{c0s $(0) cos ¢())y
{ (& YV RT/a-T/TD)  for r > &)
 epl-/mWT/ (1= TITPNr /) forr < gy

where §; = hvp /7 A(0) is the correlation length inside the SC plane.
Equatlon (17) may be solved for T, by taking into account the correlator
expression (18) only when the following condition is satisfied:

(18)

(1/27)kT, fex(1- T,/ TP) < 1. (19)
In other words, the critical temperature must be in the interval of
| T <T<Ty (20)
where T is defined as
1/kT* = 1/kTE + 1/2wep. (21)

T? is the temperature above which the interlayer phase coherence is destroyed [8].
Substituting (18) into (17) under the condition (19) we obtain the following
expression for the critical temperature T _:

YT, = /T3 ~ [1/2n g NDOW,][1 - (1+ 2N D (OW, /) /7. 22)

For a small value of the tunnelling integral W, < k? /2m£", equation (22) takes the
foliowing form:

T, = T; f[1 ~ (T7 [27)(2m&] /W) (2 [ €p)?). 23

For the opposite case, that is, W, > #*/2m¢f, the critical temperature becomes
closer to Tfuz), as can be seen from the relation

T, =TS /(1 + TS [mketyty). | (24)

It can be seen from equations (22)-(24) that the critical temperature T, increases
with increasing ¢, and approaches Té,z) in the interval T; < T, < Té,z).

It is necessary to emphasize that the above calculation of the Coulomb effect ((5),
(6) and (13)) is carried out in the frame of BsC-like mean field theory. On the other
hand quantum fluctuations of the phase of the order parameter also occur as a result
of the electrostatic charging emergy [27-30). This effect has been studied earlier [8]
for calculation of the correlator (cos ¢;(0)cos ¢;(r)), in quasi-2D sCs. In this case
the Coulomb energy is characterized by the parameter

ol = (m/24) m [2R2C
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where C is the capacitance matrix. For small values of of, ie. o < 1, the leading
term of the correlator (cos ¢,(0) cos ¢;(r))0 does not depend on the parameter o
(see [8]) and can be expressed by (18). Therefore, in the limit of o} < 1 quantum
fluctuations must not strongly change the classical fluctuation effects.

If we carry out calculations beyond the leading term in o3 < 1, then the correlator
given in (18) must be multiplied by exp[—ZOzﬁ(Tg)/T)kTg) Jer] < 1.

The appearance of such a multiplication factor of the correlator in (18) is
equivalent to renormalizing the Josephson coupling constant W, in (17). Further,
this small exponential factor will reduce the value of W, . Thus, the Conlomb energy
resulting from the quantum fluctuations of the phase of the order parameter must
lead to a reduction in T, [27-30]

The charging effects and superconductor-insulator transition [27-30] in layered
SCs are presently under investigation,

4. Conclusions

In this article the influence of the Coulomb repulsion and order parameter phase
fluctuations on T, has been studied in layered scs. In the calculation of the Coulomb
pseudopotentiai the thicknesses of the SC layers are aiso taken into consideration. By
using equation (8) for a ‘bare’ Coulomb potential, the dependence of ¢z on ¢,, a and
d (see (13)) has been obtained.

Recently other theories [26-29] have appeared that provide different explanations
of the dependence of T, on ¢; and the number of CuQ, layers in the unit cell for the
high-T, sC. To obtain the dependence of T, on the number n(n > 1) of sC layers in
each elemental cell (or on the thickness of sC layers) a generalized Ginzburg-Landau
functional with different critical temperature for each sc layer is used {28]. In this
model the critical temperature 7, was shown to increase with increasing n. Our
expression (13) for p(d) reveals only the Coulomb repulsion contribution to T..

We must point out that the dependence of T, on ¢; given in formula (13) is
not complete. To obtain the complete relation between T, and ¢, , ¢ and d within
Eliashberg’s approach, the dependences of the effective electron—phonon coupling
constant «?(w) and the phonon density of states Fi(w) on t,, a and d must be
studied. Though similar problems have been dealt with in the literature [30,31], we
believe that the dependence of the electron—-phonon coupling constant

i w

ont,, a and d should be investigated for a quasi-2D SC.

By taking into account the influence of order parameter phase fluctuations on
the critical temperature we have shown that T, decreases with ¢, (see (22)-(24))
within the interval T < T, < T2, approaching 7. This indicates destruction of
the coupling between the sC pianes. However, the existence of vortices inside layers
gives rise to a non-zero value of T,.

In artificial YBa,Cu,0,/PrBa,Cu,0, superlattices [5, 6] the dependence of T, on
SC and dielectric layer thicknesses was investigated. Increase of the dielectric layer
thickness ¢ (i.e. the decrease of ¢, ) leads to a decrease in T, and also an increase in
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the width of the resistive transition. To understand such a dependence of T, on a, one
should probably start from equation (22). Widening of the resistive transition [1-3]
may be caused by the motion of free vortices in sC layers [11-13].

It is possible to study the concentration dependence of the critical temperature in
high-T,, scs [32-39] by the equations {(22)—(24)) that we have obtained for T.

To gain more information on the ¢, dependence of T, experimental studies of sC
transitions under external pressure may be helpful.
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